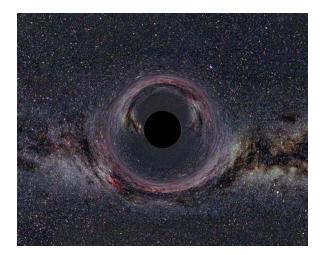
Strong energy condition and holographic complexity growth bound

Run-Qiu Yang

Korea Institute for Advanced Study



Complexity and its growth rate bound

Complexity-action conjecture

Energy condition and action growth rate bound

Based on:

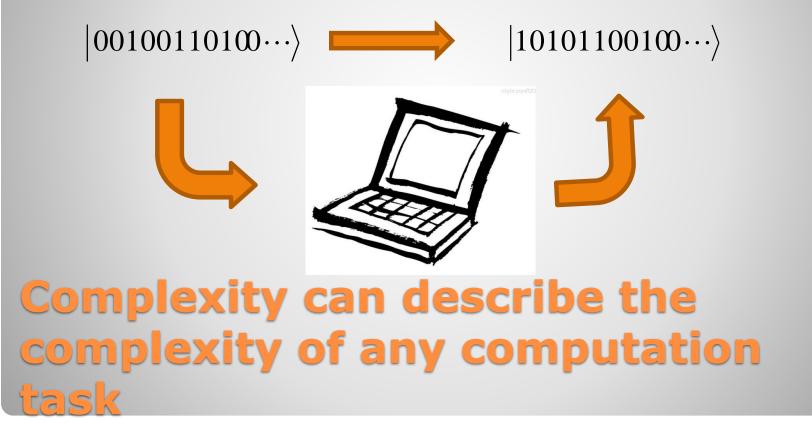
[1] A. R. Brown, et. al, Phys. Rev. Lett. 116, 191301 (2016);
[2] A. R. Brown, et. al, Phys. Rev. D 93, 086006 (2016);
[3] L. Lehner, et. al., Phys. Rev. D 94, 084046 (2016);
[4] R.-Q. Yang, arXiv: 1610.05090 [gr-qc].

Outline

- Quantum complexity is a quantum information quantity which has to do with the difficulty converting one quantum state to another quantum state.
- Consider a state : $|00\rangle$. How many steps we need at least to change it into an other state $|11\rangle$?
- The complexity of this state is 2.

What is complexity?

 Any computation task can be regarded as a transition from one state to an other state;



- **Computers are physical systems:** the laws of physics dictate what they can and cannot do.
- For a compute with energy(mass) *E*, the times it can compute in per second is,

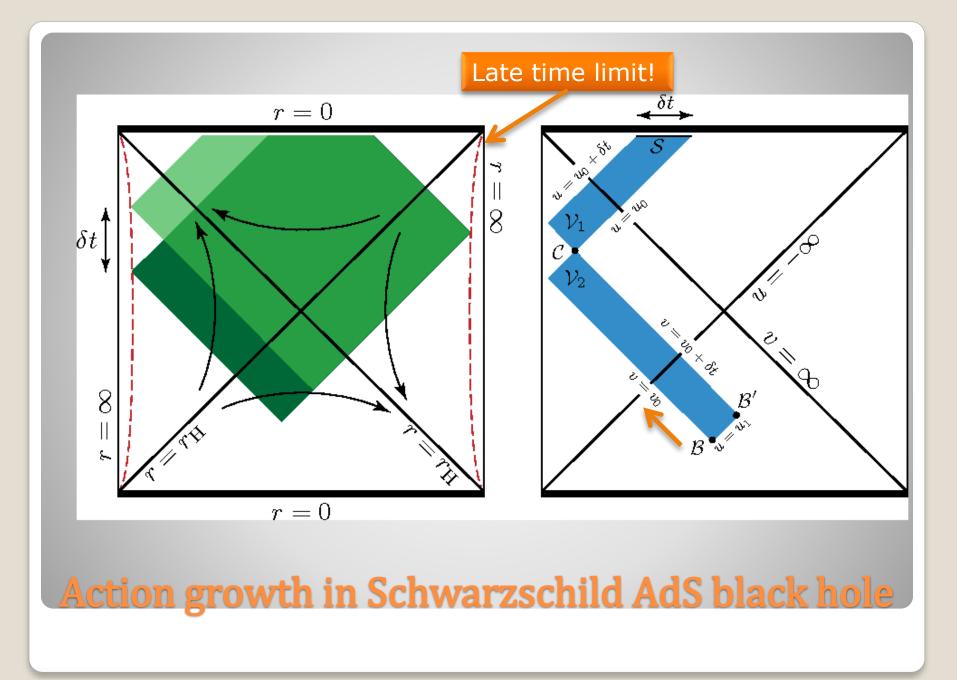
$$\frac{\mathrm{d}C}{\mathrm{d}t} \le \frac{2E}{\pi\hbar}$$

- For a compute with mass=1kg, the fastest computational ability is about 5×10⁵⁰ /sec
- Is there any real system can reach this up bound?

How fast a compute can be?

 Complexity-action (AC) states that the complexity is given by the bulk action evaluated on the Wheeler-deWitt patch attached at some boundary time t





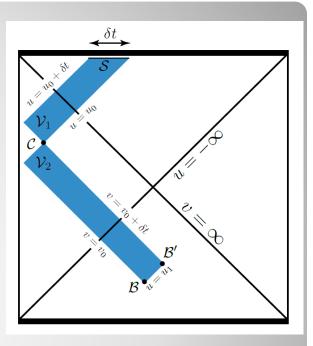
 The variation of complexity after a time δt can be expressed as,

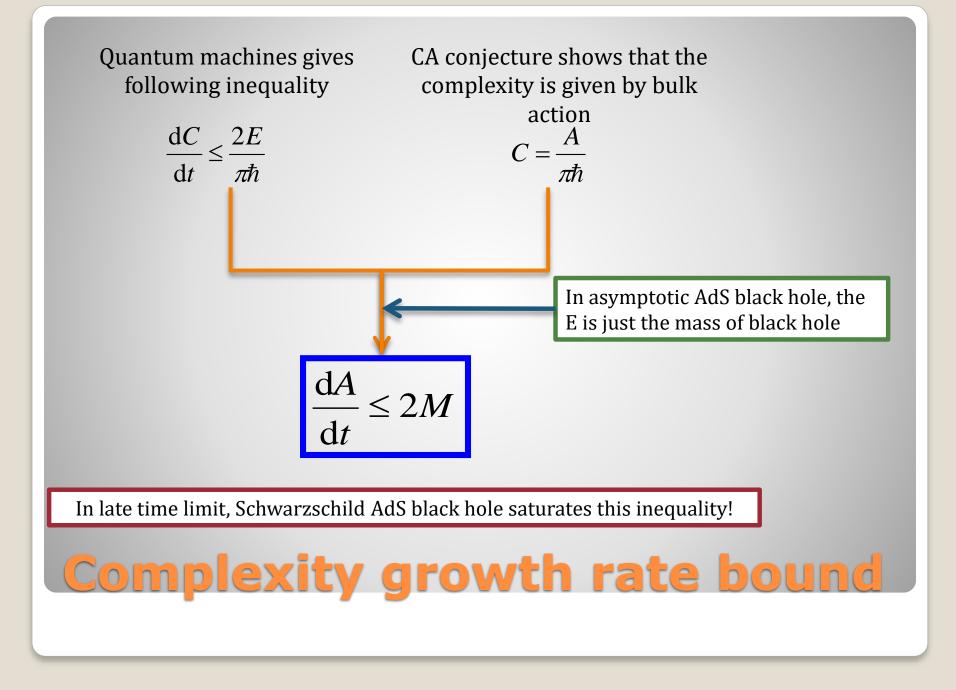
$$\delta S = S_{\mathscr{V}_1} - S_{\mathscr{V}_2} - 2 \int_{\mathcal{S}} K \, d\Sigma + 2 \oint_{\mathcal{B}'} a \, dS - 2 \oint_{\mathcal{B}} a \, dS,$$

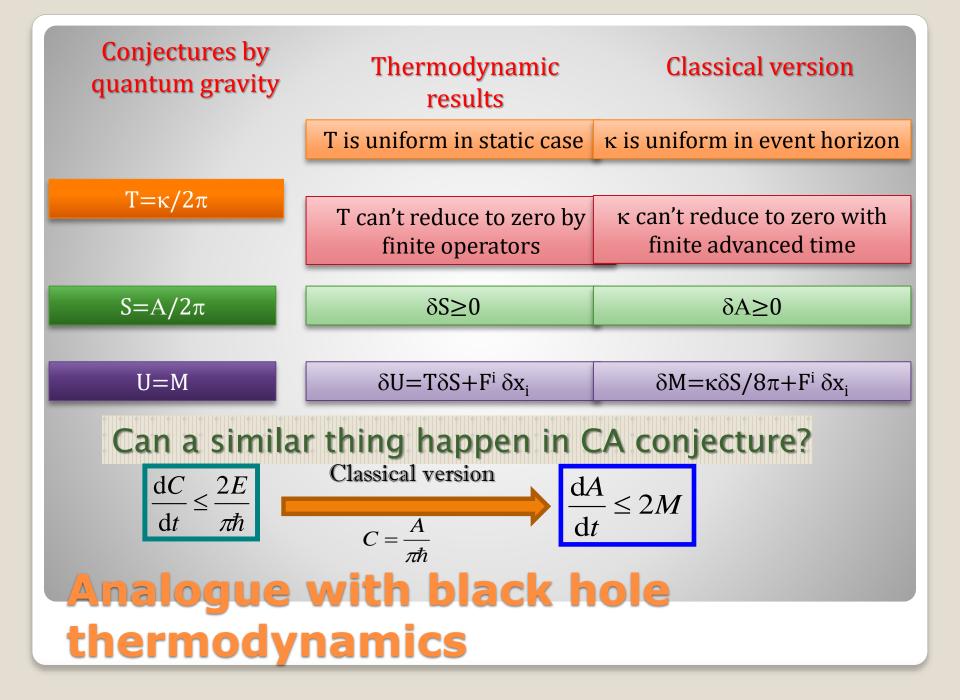
 After some computations, we can find

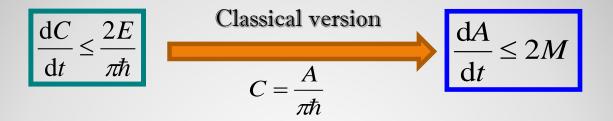
$$\frac{\mathrm{d}A}{\mathrm{d}t} = 2M$$

Action growth Schwarzschild AdS black hole





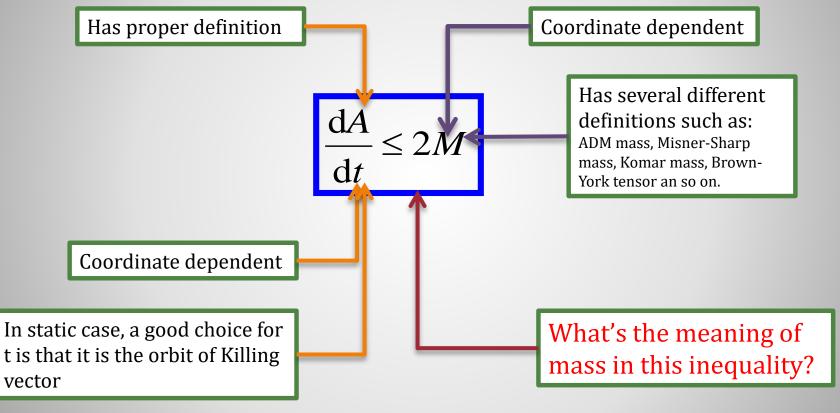




- In the late time limit, can we always find that this result?
- Dose the saturation appear only when space-time is a vacuum black hole?

Is it a universal result?

• In order to answer this question, let's first pay more attention on the bound equation it self



Bound equation

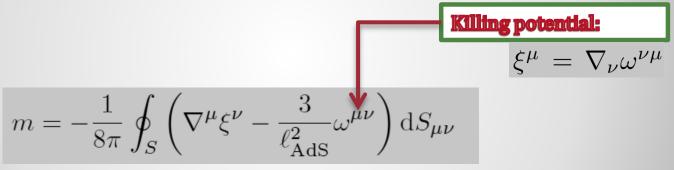
- In quantum field theory, as there is a global Poincare group, mass is a Casimir's invariants of Poincare group;
- In GR, the absence of global Poincare group leads the energy of gravitational field is nonlocal;
- In non-isolated system, the total energy is illdefined.

Mass ambiguous in GR

• To avoid the difficult in the definition about mass, we only consider the isolated system, i.e., when $r \rightarrow \infty$,

 $|r^3 T^{\mu}{}_{\nu}| < \infty$

• Define a Komar's mass for any closed two surface:



• The total mass M then can be obtained by setting $S \rightarrow \infty$,

$$M = -\frac{1}{8\pi} \oint_{S \to \infty} \left(\nabla^{\mu} \xi^{\nu} - \frac{3}{l_{AdS}^2} \omega^{\mu\nu} \right) dS_{\mu\nu}$$

Geometrical formulation

- Once fixed the tR, the action in WdW patch can be treated a s a scalar field on boundary;
- As Killing vector ξ^μ lays on the boundary, it can be seen as a vector field at the boundary, it's well defined that,

$$\frac{\mathrm{d}A}{\mathrm{d}t} = \mathcal{L}_{\xi}A$$

For a static asymptotic isolated AdS black hole (maximal extension), if it satisfies that,

- It has topology R²×S² and only space-like singularities;
- There is a connected bifurcate Killing horizon;
- Matter fields only distribute in the outside of the Killing horizon;

Strong energy condition (SEC) is satisfied.

Then at late time limit, this inequality is true,

 $\frac{\mathrm{d}A}{\mathrm{d}t} \le 2M$

The result

Table 2.1: Energy conditions.		
Name	Statement	Conditions
Weak	$T_{\alpha\beta}v^{\alpha}v^{\beta} \geq 0$	$\rho \ge 0, \rho + p_i > 0$
Null	$T_{lphaeta}k^{lpha}k^{eta}\geq 0$	$\rho + p_i \ge 0$
Strong	$\left(T_{\alpha\beta} - \frac{1}{2}Tg_{\alpha\beta}\right)v^{\alpha}v^{\beta} \ge 0$	$ \rho + \sum_{i} p_i \ge 0, \rho + p_i \ge 0 $
Dominant	$-T^{lpha}_{\ eta}v^{eta}$ future directed	$ ho \ge 0, ho \ge p_i $

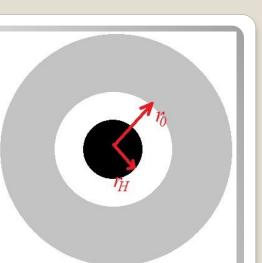
Local energy conditions

- let's consider the case there is a nonzero energy momentum tensor field T^{μν} at the region of r > r₀
- One can find that $dA/dt=2m_{H}$.
- But by Einstein equation, one can find,

Why we need SEC?

$$m = -\frac{1}{8\pi} \oint_{S} \left(\nabla^{\mu} \xi^{\nu} - \frac{3}{\ell_{AdS}^{2}} \omega^{\mu\nu} \right) dS_{\mu\nu}$$

= $2 \int_{\Sigma} (T_{\mu\nu} - \frac{1}{2} T g_{\mu\nu}) n^{\mu} \xi^{\nu} dV$
$$m(r) = m_{H} + 2 \int_{\Sigma(r > r_{0})} (T_{\mu\nu} - \frac{1}{2} T g_{\mu\nu}) n^{\mu} \xi^{\nu} dV$$



• In some region of Σ where the pressure is too negative so that

$$\left(T_{\mu\nu} - \frac{1}{2} g_{\mu\nu} T \right) \xi^{\mu} \xi^{\nu} < 0$$

$$m(r) = m_H + 2 \int_{\Sigma(r > r_0)} (T_{\mu\nu} - \frac{1}{2} T g_{\mu\nu}) n^{\mu} \xi^{\nu} dV$$

one may obtain $M = m(\infty) < m_H$;

- In order to insure the inequality, we need that M≥ m_H.
- One sufficient condition is SEC.

$$\left(T_{\mu\nu} - \frac{1}{2}g_{\mu\nu}T\right)\xi^{\mu}\xi^{\nu} \ge 0$$

Why we need SEC?

$$\frac{\mathrm{d}A}{\mathrm{d}t} \leq -\frac{1}{4\pi} \oint_{S \to \infty} \left(\nabla^{\mu} \xi^{\nu} - \frac{3}{I_{\mathrm{AdS}}^{2}} \omega^{\mu\nu} \right) \mathrm{d}S_{\mu\nu}$$

 As the space-time is static, the action growth in the outside of horizon is canceled with each other

$$\frac{\mathrm{d}\mathcal{A}}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t}\mathcal{A}_{\mathrm{in,bulk}} + \frac{\mathrm{d}}{\mathrm{d}t}\mathcal{A}_{\mathrm{in,bd}} + \frac{\mathrm{d}}{\mathrm{d}t}\mathcal{A}_{\mathrm{in,corner}}$$

The main idea of proof

$$\frac{\mathrm{d}A_{in,bulk}}{\mathrm{d}t} = -\frac{3}{8\pi l_{AdS}^2} \int_{\Sigma'} \sqrt{\xi^{\mu} \xi_{\mu}} \mathrm{d}V$$

$$\frac{\mathrm{d}A_{in,bd}}{\mathrm{d}t} = \frac{3}{2}m_H$$

$$\frac{\mathrm{d}A_{in,corner}}{\mathrm{d}t} = \frac{1}{2}m_H + \frac{3}{8\pi l_{AdS}^2} \int_{\Sigma'} \sqrt{\xi^{\mu} \xi_{\mu}} \mathrm{d}V$$

• Now use the SEC, we see

$$M = m_H + \int_{\Sigma} \left(T^{\mu\nu} - \frac{T}{2} g^{\mu\nu} \right) n_{\mu} \xi_{\nu} dV \ge m_H$$

• Finally, we obtain

The proof

$$\frac{\mathrm{d}A}{\mathrm{d}t} \le 2M$$

- Although the inequality is proposed by the consideration of CA conjecture, the proof of doesn't rely on the correctness of CA conjecture and holographic duality.
- It is a very strong evidence for CA conjecture!
- It gives us a new viewpoint to see connection between classical gravity and quantum information theory.

- There are still some very important cases that can't be covered.
- The most important one is Kerr-Newman black hole, where Maxwell field extends into the horizon and time-like singularities appear.
- It is also interesting to investigate if they could be weakened.

Further works